Preprints

  1. T. Noh, Z. Xiao, K. Cicak, X. Y. Jin, E. Doucet, J. Teufel, J. Aumentado, L. C. G. Govia, L. Ranzani, A. Kamal, R. W. Simmonds, “Strong parametric dispersive shifts in a statically decoupled multi- qubit cavity QED system”, arXiv:2103.09277 (2021).

  2. Z. Xiao, E. Doucet, T. Noh, L. Ranzani, R. W. Simmonds, L. C. G. Govia, A. Kamal, “Perturbative diagonalization for time-dependent strong interactions”, arXiv:2103.09260 (2021).

  3. K. Rudinger, G. J. Ribeill, L.C.G. Govia, M. Ware, E. Nielsen, K. Young, T.A. Ohki, R. Blume-Kohout, T. Proctor, ``Characterizing mid-circuit measurements on a superconducting qubit using gate set tomography'', arXiv:2103.03008 (2021).

  4. B. Lienhard, A. Vepsäläinen, L. C. G. Govia, et al., “Deep Neural Network Discrimination of Multiplexed Superconducting Qubit States”, arXiv:2102.12481 (2021).

  5. W. A. S. Barbosa, A. Griffith, G. E. Rowlands, L. C. G. Govia, G. J. Ribeill, M.-H. Nguyen, T. A. Ohki, D. J. Gauthier, “Symmetry-Aware Reservoir Computing”, arXiv:2102.00310 (2021).

  6. W. D. Kalfus, G. J. Ribeill, G. E. Rowlands, H. K. Krovi, T. A. Ohki, and L. C. G. Govia, “Neuromorphic computing with a single qudit”, arXiv:2101.11729 (2021).

  7. P. K. Schuhmacher, L. C. G. Govia, B. G. Taketani, and F. K. Wilhelm,“Quantum Simulation of a Discrete-Time Quantum StochasticWalk”, arXiv:2004.06151 (2020).

Published

  1. L. C. G. Govia, G. J. Ribeill, G. E. Rowlands, H. K. Krovi, and T. A. Ohki,“Quantum reservoir computing with a single nonlinear oscillator”, Phys. Rev. Research 3, 013077 (2021).

  2. D. Bunandar, L. C. G. Govia, H. Krovi, and D. Englund,“Numerical finite-key analysis of quantum key distribution”, npj Quantum Inf. 6, 104 (2020).

  3. D. Ristè, L. C. G. Govia, B. Donovan, S. D. Fallek, W. D. Kalfus, M. Brink, N. T. Bronn, and T. A. Ohki, “Real-time processing of stabilizer measurements in a bit-flip code”, npj Quantum Inf. 6, 71 (2020).

  4. L. C. G. Govia, D. Bunandar, J. Lin, D. Englund, N. Lütkenhaus and H. Krovi,“Clifford group restricted eavesdroppers in quantum key distribution”, Phys. Rev. A 101 (6), 062318 (2020).

  5. P. Groszkowski, H.-K. Lau, C. Leroux, L. C. G. Govia, and A. A. Clerk,“Heisenberg-limited spin-squeezing via bosonic parametric driving”, Phys. Rev. Lett. 125, 203601 (2020).

  6. R. S. Gupta, L. C. G. Govia, and M. J. Biercuk,“Integration of spectator qubits into quantum computer architectures for hardware tuneup and calibration”, Phys. Rev. A 102, 042611 (2020).

  7. L. C. G. Govia, G. J. Ribeill, D. Ristè, M. Ware, and H. Krovi,“Bootstrapping quantum process tomography via a perturbative ansatz”, Nat. Commun. 11, 1084 (2020).

  8. M. Houde, L. C. G. Govia, and A. A. Clerk, “Loss asymmetries in quantum travelling wave parametric amplifiers”, Phys. Rev. Applied 12 (3), 034054 (2019).

  9. A. Eddins, J. M. Kreikebaum, D. M. Toyli, E. M. Levenson-Falk, A. Dove, W. P. Livingston, B. A. Levitan, L. C. G. Govia, A. A. Clerk, I. Siddiqi, “High-efficiency measurement of an artificial atom embedded in a parametric amplifier”, Phys. Rev. X 9 (1), 011004 (2019).

  10. C. Leroux, L. C. G. Govia, and A. A. Clerk, Enhancing cavity QED via anti-squeezing: synthetic ultra-strong coupling, Phys. Rev. Lett. 120 (9), 093602 (2018).

  11. M. Mamaev, L. C. G. Govia, and A. A. Clerk, “Dissipative stabilization of entangled cat states using a driven Bose-Hubbard dimer”, Quantum 2, 58 (2018).

  12. B. G. Taketani, L. C. G. Govia, and F. K. Wilhelm, “On the physical realizability of quantum stochastic walks”, Phys. Rev. A 97 (5), 052132 (2018).

  13. O. Landon-Cardinal, L. C. G. Govia, and A. A. Clerk, “Quantitative tomography for continuous variable quantum systems”, Phys. Rev. Lett. 120 (9), 090501 (2018).

  14. A. Eddins, S. Schreppler, D. M. Toyli, L. S. Martin, S. Hacohen-Gourgy, L. C. G. Govia, H. Ribeiro, A. A. Clerk, and I. Siddiqi, “Stroboscopic qubit measurement with squeezed illumination”, Phys. Rev. Lett. 120 (4), 040505 (2018).

  15. M. Schöndorf, L. C. G. Govia, M. G. Vavilov, R. McDermott, and F. K. Wilhelm, “Optimizing single microwave-photon detection: Input-Output theory”, Quantum Sci. Technol. 3, 024009 (2018).

  16. C. Leroux, L. C. G. Govia, and A. A. Clerk, Simple variational ground state and pure cat state generation in the quantum Rabi model, Phys. Rev. A 96 (4), 043834 (2017).

  17. L. C. G. Govia and A. A. Clerk, “Enhanced qubit readout using locally-generated squeezing and inbuilt Purcell-decay suppression”, New J. Phys. 19, 023044 (2017).

  18. L. C. G. Govia, B. G. Taketani, P. K. Schuhmacher, and F. K. Wilhelm, “Quantum simulation of a quantum stochastic walk”, Quantum Sci. Technol. 2, 015002 (2017).

  19. L. C. G. Govia and F. K. Wilhelm, Entanglement generated by the dispersive interaction: The dressed coherent state, Phys. Rev. A 93 (1), 012316 (2016).

  20. L. C. G. Govia and F. K. Wilhelm, Unitary-feedback-improved qubit initialization in the disper- sive regime, Phys. Rev. Applied 4, 054001 (2015).

  21. L. C. G. Govia, E. J. Pritchett, B. L. T. Plourde, M. G. Vavilov, R. McDermott, and F. K. Wilhelm, “Scalable two-and four-qubit parity measurement with a threshold photon counter”, Phys. Rev. A 92 (2), 022335 (2015).

  22. L. C. G. Govia, E. J. Pritchett, C. Xu, B. L. T. Plourde, M. G. Vavilov, F. K. Wilhelm, and R. McDermott, “High-fidelity qubit measurement with a microwave-photon counter”, Phys. Rev. A 90 (6), 062307 (2014).

  23. L. C. G. Govia, E. J. Pritchett, and F. K. Wilhelm, Generating nonclassical states from classical radiation by subtraction measurements, New J. Phys. 16, 045011 (2014).

  24. L. C. G. Govia, E. J. Pritchett, S. T. Merkel, D. Pineau, and F. K.Wilhelm, “Theory of Josephson photomultipliers: Optimal working conditions and back action”, Phys. Rev. A 86 (3), 032311 (2012).